IMR Distinguished Lecture – Martin Green – Silicon Photovoltaics: Power Source for the Future? @ E100 Scott Laboratory
Oct 7 @ 5:00 pm – 6:30 pm

Silicon Photovoltaics: Power Source for the Future?

Prof. Martin A. Green, Australian Centre for Advanced Photovoltaics, School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Australia

Martin Green photo

The last few years has seen photovoltaics (PV) emerge from relative obscurity to becoming one of the top three sources of new electricity generation capacity internationally. The vast majority of photovoltaic solar cells produced to date have been based on silicon wafers, with this dominance likely to continue well into the future. The surge in manufacturing volume over the last decade has resulted in greatly decreased costs. Multiple companies are now producing at costs much lower than the US$1/Watt module manufacturing cost benchmark once regarded as the lowest possible with this technology. Despite these huge cost reductions, there is clear scope for much more, as the polysilicon source material becomes more competitively priced, new “high-performance” directional solidification processes for producing increasingly large and better-performing silicon ingots are brought on-line, wafer slicing switches to much quicker diamond impregnated approaches and cell conversion efficiencies increase towards 25% and increasing effort is placed on the development of even higher performance silicon-based tandem cell stacks. Photovoltaics are increasingly seen as a viable green energy source of the future, meeting growing energy demands on a large scale without adding to the carbon burden.


Dr. Martin Green is currently Scientia Professor at the University of New South Wales, Sydney and Director of the Australian Centre for Advanced Photovoltaics. His group’s contributions to photovoltaics include development of the world’s highest efficiency silicon cells and commercialization of several different cell technologies.  He is the author of several books on solar cells and numerous papers.  His work has been recognised by major international awards including the 2002 Right Livelihood Award, also known as the Alternative Nobel Prize, the 2007 SolarWorld Einstein Award and the 2010 Eureka Prize for Leadership. In 2012, he was appointed as a Member of the Order of Australia in recognition of his contributions to photovoltaics and photovoltaics education.

IMR Distinguished Lecture – Mark Verbrugge @ E100 Scott Laboratory
Oct 14 @ 1:30 pm – 3:00 pm

The Automotive Industry, Vehicle Electrification, and Industrial Research

Mark W. Verbrugge, Chemical and Materials Systems Laboratory, General Motors Research and Development


I will begin this talk with a review of automotive vehicle electrification: trends and drivers. The life of lithium-ion batteries is related to the mechanical expansion and contraction of the active materials along with solvent decomposition at the active material surfaces—lithium-ion batteries would not work if a protective shell did not cover the electroactive core of the positive and negative electrode materials. Exposure of the active core leads to cell degradation. These observations hold for current and next-generation lithium-ion batteries. Under what conditions are the protective (outer shell) materials compromised? In addition to reviewing literature that is relevant to answering this question, I intend to overview research results to render a qualitative response to this question and identify open questions that limit the quantitative application of modeling results to these systems. Last, I plan to close with a brief perspective on “what is useful industrial research?”

Speaker’s Bio

Mark Verbrugge is the Director of GM’s Chemical and Materials Systems Laboratory, which maintains global research programs—enabled by the disciplines of chemistry, physics, and materials science—and targets the advanced development of structural subsystems, energy storage and conversion devices, and various technologies associated with fuels, lubricants, and emissions.

Mark is a Board Member of the United States Automotive Materials Partnership LLC and the United States Advanced Battery Consortium LLC. Mark has received a number of GM internal awards as well as external awards including the Norman Hackerman Young Author Award and the Energy Technology Award from the Electrochemical Society, and the Lifetime Achievement Award from the United States Council for Automotive Research. Mark is a Fellow of the Electrochemical Society and a member of the National Academy of Engineering.






IMR Distinguished Lecture: Joan Brennecke, University of Notre Dame @ 130 CBEC (Chemical and Biomolecular Engineering and Chemistry) Building
Feb 18 @ 3:00 pm – 4:00 pm

Ionic Liquids for Post-Combustion CO2 Capture

Joan F. Brennecke, Keating-Crawford Professor of Chemical Engineering, Department of Chemical and Biomolecular Engineering, University of Notre Dame

Brennecke for web


Ionic liquids (ILs) present intriguing possibilities for removal of carbon dioxide from a wide variety of different gas mixtures, including post-combustion flue gas, pre-combustion gases, air, and raw natural gas streams. Even by physical absorption, many ILs provide sufficient selectivity over N2, O2, CH4 and other gases. However, when CO2 partial pressures are low, the incorporation of functional groups to chemically react with the CO2 can dramatically increase capacity, while maintaining or even enhancing selectivity. We will demonstrate several major advances in the development of ILs for CO2 capture applications. First, we will show how the reaction stoichiometry can be doubled over conventional aqueous amine solutions to reach one mole of CO2 per mole of IL by incorporating the amine on the anion. Second, we will show how we have been able to virtually eliminate any viscosity increase upon complexation of the IL with CO2, by using aprotic heterocyclic anions (AHA ILs) that eliminate the pervasive hydrogen bonding and salt bridge formation that is the origin of the viscosity increase. Third, we will describe the discovery of AHA ILs whose melting points when reacted with CO2 are more than 100 °C below the melting point of the unreacted material. These materials allow one to dramatically reduce the energy required for CO2 release and regeneration of the absorption material because a significant amount of the energy needed for the regeneration comes from the heat of fusion as the material releases CO2 and turns from liquid to solid.

Speaker Bio

Joan F. Brennecke is the Keating-Crawford Professor of Chemical Engineering at the University of Notre Dame and was the founding Director of the Center for Sustainable Energy at Notre Dame.  She joined Notre Dame after completing her Ph.D. and M.S. (1989 and 1987) degrees at the University of Illinois at Urbana-Champaign and her B. S. at the University of Texas at Austin (1984).

Her research interests are primarily in the development of less environmentally harmful solvents. These include supercritical fluids and ionic liquids. In developing these solvents, Dr. Brennecke’s primary interests are in the measurement and modeling of thermodynamics, thermophysical properties, phase behavior and separations. Major awards include the 2001 Ipatieff Prize from the American Chemical Society, the 2006 Professional Progress Award from the American Institute of Chemical Engineers, the J. M. Prausnitz Award at the Eleventh International Conference on Properties and Phase Equilibria in Greece in May, 2007, the 2008 Stieglitz Award from the American Chemical Society, the 2009 E. O. Lawrence Award from the U.S. Department of Energy, and the 2014 E. V. Murphree Award in Industrial and Engineering Chemistry from the American Chemical Society. She serves as Editor-in-Chief of the Journal of Chemical & Engineering Data. Her 130+ research publications have garnered over 12,000 citations. She was inducted into the National Academy of Engineering in 2012.

Distinguished Lecture Series — Steven Schwendeman @ 1183 Postle Hall
Oct 20 @ 11:30 am – 12:30 pm

Distinguished Lecture Series

The Ohio State University College of Dentistry invites world-renowned investigators in oral health research to share their knowledge and expertise with our community through the Distinguished Lecture Series. The series helps to ensure that our students, faculty, researchers, and scientists remain on the cutting edge of dental research.


October 20

Steven Schwendeman, PhD

Chair and Ara G. Paul Professor Pharmaceutical Sciences, College of Pharmacy
Professor of Biomedical Engineering, College of Engineering
University of Michigan

Please view this link for detailed information: DLS_hart_schwendeman_102015_letter_vs1


IMR Distinguished Lecture – Sanjay Krishna, University of New Mexico @ E100 Scott Laboratory
Apr 12 @ 9:45 am – 11:00 am

Antimonide Materials for Mid-Infrared Photonic Detectors and Focal Plane Arrays

Sanjay Krishna

Director, Center for High Technology Materials, Professor and Regents’ Lecturer, Department of Electrical and Computer Engineering, University of New Mexico


Infrared imaging (3-25mm) has been an important technological tool for the past sixty years since the first report of infrared detectors in 1950s. There has been a dramatic progress in the development of infrared antimonide based detectors and low power electronic devices in the past decade with new materials like InAsSb, InAs/GaSb superlattices and InAs/InAsSb superlattices demonstrating very good performance. One of the unique aspects of the 6.1A family of semiconductors (InAs, GaSb and AlSb) is the ability to engineer the bandstructure to obtain designer band-offsets. Our group ( has been involved with the vision of the 4th generation of infrared detectors and is one of two university laboratories in the country that can undertake “Design to Camera” research and realize focal plane arrays.

My talk will revolve around three research themes.

The first theme involves the fundamental investigation into the material science and device physics of the antimonide systems. I will describe some of the challenges in these systems including the identification of defects that limit the performance of the detector. The use of “unipolar barrier engineering” to realize high performance infrared detectors and focal plane arrays will be discussed.

The second theme will involve the vision of the 4th Gen infrared imaging systems. Using the concept of a bio-inspired infrared retina, I will make a case for an enhanced functionality in the pixel. The key idea is to engineer the pixel such that it not only has the ability to sense multimodal data such as color, polarization, dynamic range and phase but also the intelligence to transmit a reduced data set to the central processing unit. The design and demonstration of meta-infrared detectors will be discussed.

In the final theme, I will describe the role of infrared imaging in bio-medical diagnostics. In particular, I will highlight some work on using infrared imaging in the early detection of skin cancer and for detection of flow in cerebral shunts. Using dynamic thermal imaging on over 100 human subjects, a sensitivity >95% and specificity >83% has been demonstrated. Commercialization of this technology will also be discussed.

Speaker Biography:

Sanjay Krishna is the Director of the Center for High Technology Materials and Professor and Regents Lecturer in the Department of Electrical and Computer Engineering at the University of New Mexico. Sanjay received his M.S. from IIT, Madras, MS in Electrical Engineering in 1999 and PhD in Applied Physics in 2001 from the University of Michigan. He joined UNM as a tenure track faculty member in 2001. He currently heads a group of 15 researchers involved with the development of next generation infrared imagers. Sanjay received the Gold Medal from IIT, Madras, Ralph Powe Junior Faculty Award, IEEE Outstanding Engineering Award, ECE Department Outstanding Researcher Award, School of Engineering Jr Faculty Teaching Excellence Award, NCMR-DIA Chief Scientist Award for Excellence, the NAMBE Young Investigator Award, IEEE-NTC, SPIE Early Career Achievement Award and the ISCS Young Scientist Award. He was also awarded the UNM Teacher of the Year and the UNM Regents Lecturer award. Sanjay has more than 200 peer-reviewed journal articles (h-index=42), two book chapters and seven issued patents. He is the co-founder and CTO of Skinfrared, a UNM start-up involved with the use of IR imaging for dual use applications including early detection of skin cancer. He is a Fellow of IEEE, OSA and SPIE.


IMR Distinguished Lecture – Pierre Verlinden, Trina Solar @ E525 Scott Laboratory
Jun 17 @ 10:00 am – 11:15 am

IMR Distinguished Lecture Series presents

21.25% World Efficiency Record with Multi-Crystalline p-type Silicon Solar Cells: Closing the Gap with n-type Mono

Pierre Verlinden

Vice President, Chief Scientist and Vice-Chair of State Key Laboratory, Trina Solar

Friday, June 17, 10:00 AM

E525 Scott Laboratory, 201 West 19th Avenue, Reception to follow


Multicrystalline Silicon technologies represents more than 65% of 2015 global shipments. Over the last two years, the best p-type multicrystalline silicon solar cells developed by Trina Solar have reached new efficiency records, up to 20.86% in 2014 and 21.25% in 2015. These achievements result from improvements of all aspects of the solar cell fabrication: contamination control, development of high-performance multi-crystalline silicon wafers, cell design and process optimization. Analysis show that efficiencies above 22% are possible with p-type multicrystalline and could be reached in the next few years.


Speaker Bio:

Pierre J. Verlinden is Vice-President and Chief Scientist at Trina Solar, the world’s largest PV manufacturer. He is also Vice-Chair of the State Key Laboratory of PV Science and Technology. Dr. Verlinden has been working in the field of photovoltaics for more than 35 years and has published over 170 technical papers and contributed to a number of books. Before joining Trina Solar, Dr. Verlinden served as Chief Scientist or head of R&D department in several other PV companies in USA and Australia, including SunPower, Origin Energy, Amrock and Solar Systems.


IMR Distinguished Lecture Series- Neil Alford, Imperial College of London @ Smith Seminar Room, 1080 Physics Research Building
Jan 20 @ 9:30 am – 10:30 am

From Mobile Phones to Russian Dolls to MASERs


Neil Alford, Head of Department of Materials, Imperial College London

Friday, January 20, 2017

9:30 AM

Smith Seminar Room, 1080 Physics Research Building



In this talk we will look at the problem of dielectric loss (the tan δ) in oxides and how this led us to the world’s first room temperature MASER. Why are we interested in dielectric loss? Almost all of us have a mobile phone and dielectric resonators form essential parts of communications systems. The term “Dielectric Resonator” was first used by Richtmeyer(1) in 1939 who showed that a dielectric ring could confine high frequency electromagnetic waves and thus form a resonator. The idea of a dielectric material confining EM radiation dates back to 1897 when Lord Rayleigh described a dielectric waveguide(2) and in 1909 when Debye described dielectric spheres(3). With the astonishing growth in the cellular communications industry the market is now very approximately 2BN sales of mobile phones each year (that’s about 60 each second) the market for microwave ceramics is huge.
One of the key properties is the dielectric loss or tan delta. The inverse of this is called the Quality factor or Q. Imagine a tuning fork. When you strike it, it resonates for a long time – it has a high Q and if it were made from e.g. wood it would be damped severely, would not resonate and have a very low Q. Now imagine hitting a dielectric (like alumina or sapphire) with an electromagnetic wave – a microwave – it resonates and what we need is a very high Q so that we can build good filters. The dielectric loss is limited by the dielectric loss of the material – the dielectric limit – but suppose you could exceed this. This is what we did by some cunning engineering using a Bragg reflector (a bit like a Russian doll) in which the sapphire layers of the Russian doll (called Bragg layers) are not the usual equal thickness but are aperiodic. Remarkably, if the layers are aperiodic in thickness the Q factor rises quadratically to reach extraordinarily high values of Q=0.6×106 at 30GHz (world record)(4).
This result suggested that it might be possible to reach the threshold for masing and indeed we demonstrated that in P-terphenyl doped with pentacene when located inside a very high Q sapphire resonator maser action can be observed. This is the first time a solid state maser has been demonstrated at room temperature and in the earth’s magnetic field(5). Recent work(6) has shown that miniaturisation is feasible and considerable reduction in pumping power is possible by using a strontium titanate resonator which by virtue of a higher relative permittivity leads to a factor of over 5 in size reduction. Importantly, the Purcell factor which is the ratio of the Q factor to the mode volume, remains high and this is a key factor in the ability to exceed the threshold for masing.

Speaker Biography
Professor Neil Alford MBE FREng is a materials scientist and Associate Provost for Academic Planning at Imperial College London. He worked in industry for 15 years and then in University research at Queen Mary College, Oxford and South Bank University. His work has focused on materials from high-strength cement to High Temperature Superconductors, nanotechnology and room temperature MASERs. Technology transfer is a key focus and Neil’s discoveries been applied widely in industry, including cellular communications. Having held various academic posts at Imperial (including HoD of Materials), Neil is closely involved in the College’s new White City Campus. Spanning 23 acres, the campus will provide a new research and innovation district, where Imperial and its partners work to tackle the world’s greatest challenges. It will provide space for new types of multidisciplinary research, collaboration with corporations, institutions and start-ups, as well as activities to engage and inspire the community in White City.


1. R. D. Richtmeyer, J Appl. Phys. 10, 391-398 (1939)
2. Lord Rayleigh, Phil. Mag. S.5 43, 125-132 (1897)
3. P. Debye, Ann. D. Physik, 30, 57-136 (1909)
4. Better than Bragg: Optimizing the quality factor of resonators with aperiodic dielectric reflectors Breeze Jonathan; Oxborrow Mark; Alford Neil McN APPLIED PHYSICS LETTERS Volume: 99 Issue: 11 Number: 113515 2011
5. Room Temperature Maser NATURE, 16 August 2012 Mark Oxborrow, Jonathan Breeze and Neil Alford
6. Enhanced magnetic Purcell effect in room-temperature masers Jonathan Breeze, Ke-Jie Tan, Benjamin Richards, Juna Sathian, Mark Oxborrow and Neil Alford Nature Comms DOI 10.1038/ncomms7215 (2015)


Energy and Environment Discovery Themes Seminar: Ardeshir Contractor, Kiran Energy @ Mason Hall, 2nd Floor Rotunda
Feb 7 @ 2:00 pm – 3:30 pm

Energy and Environment Discovery Themes Seminar



Contractor photoArdeshir Contractor, Founder and CEO, Kiran Energy

Factors Influencing Product Innovation in Solar Energy Markets

Tuesday, February 7, 2017

2:00 – 3:30 PM

Mason Hall, 2nd Floor Rotunda, 250 West Woodruff Avenue, Columbus, Ohio 43210

Reception immediately following program

Registration: Discovery Themes Survey RSVP 




Co-sponsored by the Materials and Manufacturing for Sustainability Discovery Theme focus area, Institute for Materials Research and Fisher College of Business




In 2010, Ardeshir Contractor raised $80M from three US private equity investors and a joint venture with First Solar to build Kiran Energy – a solar energy utility at the forefront of India’s solar energy market.  In its journey, the company examined and deployed multiple innovative products seeking higher performance with leap-frog cost economics and also set early benchmarks in non-recourse project financing.

This talk will focus on both product innovation in solar energy and innovation in sustainability financing.  The size of the solar energy market is significant – nearing an annual investment in solar energy new power plants of $250B.  Solar modules, inverters, monitoring systems, and storage comprise most of this number.  The addressable market for the introduction of new solar technology or product innovation is very large and allows for immense scalability.  The solar market is truly global both in terms of markets and suppliers.


Product innovation in solar energy

The seminar will include a review of effective product introductions, many of which exhibit similar characteristics of product astuteness and a drive to forward-looking performance and commercial targets.  Not all successes have been smooth, some of the leaders have had setbacks including unforeseen technical issues.  The large amounts of investment required for manufacturing and selling implied a constant requirement to maintain the path and story of strong financial returns.  Blending aggressive technology and commercial innovation appears to have worked. It is useful to examine how such dual innovation is embedded in a product offering.


Innovation in sustainability financing

Solar energy components and systems are expected to function for 20-30 years and the overlay of bankability and financing are critical especially for innovative technology.  The long-term nature of the finance and returns – coupled with the very scale of the explosive investment needs – has required the development of new financial market products and market sources.  Very quickly the sustainable financing story has evolved from government and agency support to mainline financial markets.  However, analytical processes and the banking institutions are still retooling for this.  In addition, an asset that functions over such a long term would require financial evaluation and analysis methods that align with its characteristics.  The approach is to describe these efforts, the evolution of sustainable financing and what it implies to product innovation.


Speaker Biography 

Ardeshir Contractor chairs India’s solar energy task force at the Federation of Indian Chambers of Commerce and partners with the government in developing policy, standards, and technological opportunity for Indian manufacture in solar.  He is also an adjunct Research Associate with Edhec Infrastructure Institute, Singapore, investigating long term asset finance principles.  In December 2015, he addressed the United Nations at the Paris Climate Change Conference (COP21), and he was deeply involved with the UN Environment Programme’s Enquiry on the design of a global sustainable financial system.  Mr. Contractor has served on the boards of Nature India, Government Committees, and Clean Energy Ministerial.  He received his Masters in Mechanical Engineering from The Ohio State University, was the recipient of the 2015 College of Engineering’s Distinguished Alumni Award, and is currently an Executive in Residence with the Institute for Materials Research.


Ohio State’s materials research engine and the Discovery Themes program it drives are helping to position Ohio State as a model 21st-century land-grant university focused on interdisciplinary collaboration and innovation. The depth and breadth of our faculty, the ingenuity of our students and the global reach of our partners is at the heart of Discovery at Ohio State.

Distinguished Lecturer Series – Wayne D. Kaplan @ E100 Scott Lab
Oct 12 all-day

Wayne D. Kaplan is a full professor in the Department of Materials Science and Engineering at the Technion – Israel Institute of Technology, where he holds the Karl Stoll Chair in Advanced Materials.  Kaplan currently serves as the Executive Vice President for Research at the Technion.  He completed his BSc in Mechanical Engineering, and his MSc and DSc in Materials at the Technion after immigrating to Israel from the U.S.  He then spent a year as a Humboldt Fellow at the Max-Planck Institute in Stuttgart Germany before joining the Technion faculty in 1995.


During the past 20 years Kaplan’s research activities at the Technion have focused on the structure, chemistry and energy of interfaces between metals and ceramics, with a focus on the correlation between thermodynamics (continuum) approaches and the atomistic structure and chemistry of interfaces.  In addition to his fundamental research in materials science, Kaplan works on the development of electron microscopy techniques for characterization at the sub-nanometer length-scale.


Kaplan is the author of more than 130 reviewed and archived scientific articles, as well as two textbooks: Joining Processes and Microstructural Characterization of Materials.  In 2006 he received the Henry Taub Prize for Academic Excellence.  He is a fellow of the American Ceramic Society, a member of the Israel Microscopy Society, and was an editor of the Journal of Materials Science (Springer).




Controlling grain size is a fundamental part of Materials Science and Engineering.  While the driving force for grain growth is thought to be understood, the mechanism by which grain boundaries migrate, and how microscopic parameters affect grain boundary mobility, are less understood.  This presentation focuses on the mobility of grain boundaries and how dopants and external fields influence the kinetics of grain growth.


The first part of the talk will address the concept of solute-drag, where conventional wisdom indicates that moving a solute cloud with a grain boundary should either slow down grain boundary motion (e.g. Mg in Al2O3), or not affect it.  Model experiments at dopant levels below the experimentally determined solubility limit clearly show that some adsorbates reduce grain boundary mobility (the accepted solute-drag effect) whereas other increase grain boundary mobility (solute-acceleration).  Reasons for the varying behavior are discussed within the framework of grain boundary disconnections as the mechanism by which grain boundaries move, and current approaches to understanding Gibbsian adsorption.


The second part of the talk reviews model experiments designed to probe the influence of external fields on grain boundary mobility.  As a model system, polycrystalline SiC underwent conventional annealing, and annealing using spark plasma sintering (SPS) without pressure, and the grain size as a function of annealing time was characterized.  From these experiments, the grain boundary mobility of SiC at 2100°C under conventional versus SPS annealing was determined.  SPS annealing resulted in a grain boundary mobility which is three orders of magnitude larger than that resulting from conventional annealing.  This indicates that the same (or similar) mechanism which promotes rapid sintering during SPS also significantly increases the rate of grain growth.  This mechanism will be discussed in light of the “solute-acceleration” effect presented in the first part of the talk.